Instructions: Closed Book Exam. Please write clear and precise answers.

- 1. Let $\alpha > 0$. Consider the graph Z_+ with weights $\mu_{n,n+1}^{\alpha} = \alpha^n$.
 - (a) (5 points) Show the graph (Z_+, μ^{α}) has controlled weights. Does it have bounded weights?
 - (b) (10 points) Show that the graph is recurrent if and only if $\alpha \leq 1$.
- 2. Consider Γ to be the join of two copies of \mathbb{Z}^3 at their origins. Write $\mathbb{Z}^3_{(i)}$, i=1,2 the two copies, and 0_i for their origins. Let

$$F = \{X \text{ is ultimately in } Z^3_{(1)}\}$$

and let $h(x) = P^x(F)$.

- (a) (3 points) Show that h is harmonic,
- (b) (4 points) Show that $h(x) \geq \mathbb{P}^x(X \text{ never hits } 0_1)$ for $x \in \mathbb{Z}_{(1)}^3$.
- (c) (4 points) Show that $h(x) \leq \mathbb{P}^x(X \text{ hits } 0_2)$ for $x \in \mathbb{Z}^3_{(2)}$.
- (d) (4 points) Decide whether Γ has the Liouville Propety: All bounded harmonic functions on Γ are constant.
- 3. Let X_n be a random walk on Z.
 - (a) (3 points) Show that $L = \sup\{n \ge 1 : X_n = 1\}$ is not a stopping time.
 - (b) (3 points) Show that $F = \inf\{n \geq 1 : X_n \in \{0,4\}\}\$ is a stopping time. Can you find the distribution of X_F ?
 - (c) (3 points) Show that the return time T_i to a state $i \in S$ is a stopping time.
 - (d) (3 points) Let $T_a = \inf\{n \geq 1 : X_n = a\}$. Show that T_a is a stopping time and the 'inf' in T_a is actually a minimum almost everywhere.
 - (e) (3 points) (Reflection Principle) Suppose $M_n = \max_{0 \le i \le n} X_i$. Show that for $X_0 = 0$ and a > 0,

$$P(M_n \ge a, X_n < a) = P(M_n \ge a, X_n > a).$$

(Hint: Apply the strong markov property at T_a and symmetry of the distribution of the Bernoulli trials.)

4. An urn contains R red and G green balls. At each time we draw a ball from the urn, then replace it, and add C balls of the colour drawn. Let $\{X_n\}_{n\geq 1}$ be the fraction of green balls after the n-th draw. Show that X_n is a martingale.